Groupe 5

1. **Un échauffement** : Choisir la bonne réponse à la question suivante en préparant une justification à donner à l'oral

Soit f la fonction définie sur \mathbf{R}_+ par $f(x) = \sqrt{x}$. Le coefficient directeur de la tangente à la courbe représentative de f au point d'abscisse 1 vaut

A. 1

B. 2

C. 0,5

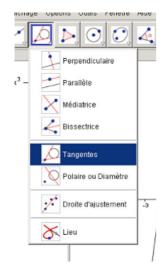
D. 1/4

- 2. **Une démonstration** : On veut démontrer la propriété de cours suivante: Soit f définie et dérivable sur un intervalle I. Si f est croissante sur I alors, pour tout nombre réel x de I on a $f'(x) \ge 0$.
 - 1. Préliminaire: rappeler la définition de fonction croissante sur I.
 - 2. Rappeler l'expression de τ_a , le taux d'accroissement de la fonction f en x=a où a appartient à I.
 - 3. Discuter le signe de τ_a dans les deux cas h>0 et h<0 (il faudra utiliser le fait que f est croissante).
 - 4. Conclure en passant à la limite (cela conserve le signe de τ_a)

3. Un exercice:

On considère les fonctions f et g définies pour tour réel x par $f(x) = 2x^2 - 3x + 1$ et $g(x) = x^2 - 3x + 2$.

- 1. Déterminer les points d'intersections des courbes représentatives de ces deux fonctions
- 2. « Deux courbes sont dites orthogonales si les tangentes en un de leurs points d'intersections sont perpendiculaires ». Les courbes représentatives de f et g sont elles orthogonales?



Coup de pouce:

Soient (d₁) et (d₂) deux droites du plan de coefficients directeurs respectifs m_1 et m_2 , tous les deux non nuls.

(d1) et (d2) sont perpendiculaires si et seulement si

$$m_1 m_2 = -1$$

